

Tip

If you find some discrepancy or missing information - open a GitHub issue [https://github.com/superstes/wiki/issues/new]

Was this information useful? Then star the repository on GitHub [https://github.com/superstes/wiki/stargazers]

Superstes Wiki

Knowledge for everyone.

IT-Infrastructure

	IT-Infrastructure
	GRUB

	LVM

	Web Application Firewalling

Network

	Network
	Firewall - NFTables

	Proxy - Squid

	Proxy Tool - GOST

	Proxy Tool - ProxyShark

	Security Approaches

	Tor

Coding

	Coding

Tip

If you find some discrepancy or missing information - open a GitHub issue [https://github.com/superstes/wiki/issues/new]

Was this information useful? Then star the repository on GitHub [https://github.com/superstes/wiki/stargazers]

IT-Infrastructure

	GRUB

	LVM

	Web Application Firewalling

Tip

If you find some discrepancy or missing information - open a GitHub issue [https://github.com/superstes/wiki/issues/new]

Was this information useful? Then star the repository on GitHub [https://github.com/superstes/wiki/stargazers]

Warning

It has been some time since I’ve set-up a system this way. (as of writing this)

The information be missing some details.

GRUB

Redundant boot disks

EFI boot does not yet support software-raid (MD) => see: Debian documentation - UEFI Grub [https://wiki.debian.org/UEFI#RAID_for_the_EFI_System_Partition]

After installing the system with a single boot-partition, we will have to reinstall it on the second one!

Disk

You will have to use a second disk to get redundancy.

Create a boot partition at its beginning and mark it as bootable! 512MB should be enough.

Reinstall

See also Debian documentation - Grub reinstall [https://wiki.debian.org/GrubEFIReinstall]

First we will have to boot from a live-system! Example Debian Live-system [https://www.debian.org/CD/live/]

After that we can install grub on the second disk:

sda is the new disk
mount /dev/sda3 /mnt
mount /dev/sda2 /mnt/boot
mount /dev/sda1 /mnt/boot/efi
mount --rbind /dev /mnt/dev
mount --rbind /proc /mnt/proc
mount --rbind /sys /mnt/sys
chroot /mnt
grub-install /dev/sda --efi-directory=/boot/efi --target=x86_64-efi

Make sure to enable both of the disks in the UEFI/BIOS boot sequence.

Sync

After installing redundant boot-partitions - we still have a problem when doing a system update.

It will only update the kernel version on the currently active partition!

To fix this we can:

	Mount both boot partitions in the host system

find disk ID's
ls -l /dev/disk/by-id/

cat /etc/fstab
> ...
> /dev/disk/by-id/wwn-0x5001b444a60ff504-part1 /boot/efi vfat defaults,noatime,nofail 0 2
> /dev/disk/by-id/wwn-0x5001b444a60ff504-part2 /boot ext4 defaults,nofail 0 1
> /dev/disk/by-id/ata-SanDisk_X400_M.2_2280_256GB_170839425792-part1 /boot2/efi vfat defaults,noatime,nofail 0 2
> /dev/disk/by-id/ata-SanDisk_X400_M.2_2280_256GB_170839425792-part2 /boot2 ext4 defaults,nofail 0 1

	Add a sync script: (/usr/local/sbin/grub_sync.sh)

#!/bin/bash
set -euo pipefail

PATH_BAK='/var/backups/boot'
RETENTION_DAYS=30

if mount | grep "on /boot type" -q && mount | grep "on /boot2 type" -q
then
 mkdir -p "$PATH_BAK"

 echo '### REMOVING OLD BACKUPS of /boot2'
 find "${PATH_BAK}/" -mtime +${RETENTION_DAYS} -name "*.tar.gz" -type f # to show the files to be deleted
 find "${PATH_BAK}/" -mtime +${RETENTION_DAYS} -name "*.tar.gz" -type f -delete

 echo '### BACKING-UP current /boot2'
 tar -czf "${PATH_BAK}/$(date '+%Y-%m-%d_%H-%M-%S').tar.gz" /boot2/ 2>/dev/null

 echo '### SYNCING /boot to /boot2'
 rsync -av --delete /boot/ /boot2 --exclude "lost+found"
else
 echo 'Missing at least one boot-partition in mounts!'
 exit 1
fi

	Add sync job

crontab -e

sync boot-partitions daily
0 0 * * * /bin/bash /usr/local/sbin/grub_sync.sh

Tip

If you find some discrepancy or missing information - open a GitHub issue [https://github.com/superstes/wiki/issues/new]

Was this information useful? Then star the repository on GitHub [https://github.com/superstes/wiki/stargazers]

LVM

Intro

LVM is a disk-management system that adds some nice functionality in comparison to using bare partitions.

It creates a layer between the physical disks and partitions.

[image: lvm]

This allows you to:

	Work around the common problem of resizing partitions that are not in the last position on the physical disk

	Creation of volume snapshots

	Thin-Provisioned volumes

	Options to configure RAID

	Implementation of write caches

More information can be found in the RedHat documentation [https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_logical_volumes/index]!

Usage

Navigation

How to get the status and information of your current setup.

Overview

The ‘lsblk’ command shows you an overview of your current storage configuration.

root@superstes:~# lsblk
> NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
> sda 8:0 0 30G 0 disk
> |-sda1 8:1 0 487M 0 part /boot
> |-sda2 8:2 0 1K 0 part
> `-sda5 8:5 0 29.5G 0 part
> |-vg0-root 254:1 0 9.7G 0 lvm /
> |-vg0-var 254:2 0 9.7G 0 lvm /var
> `-vg0-swap 254:3 0 1.9G 0 lvm [SWAP]
> sdb 8:16 0 100G 0 disk
> `-vg1-data 254:0 0 50G 0 lvm /mnt/data

Physical volumes

These commands show you how LVM sees your physical disks.

root@superstes:~# pvs
> PV VG Fmt Attr PSize PFree
> /dev/sda5 vg0 lvm2 a-- <29.52g <8.35g
> /dev/sdb vg1 lvm2 a-- <100.00g <50.00g

root@superstes:~# pvdisplay
prettified
> --- Physical volume ---
> PV Name /dev/sdb
> VG Name vg1
> PV Size 100.00 GiB / not usable 4.00 MiB
> Total PE 25599
> Free PE 12799
> Allocated PE 12800
>
> --- Physical volume ---
> PV Name /dev/sda5
> VG Name vg0
> PV Size 29.52 GiB / not usable 2.00 MiB
> Total PE 7557
> Free PE 2137
> Allocated PE 5420

That can be useful if you resize the (virtual) physical disk and are not sure if LVM realized the changes.

Volume groups

These commands show you the existing Volume Groups.

root@superstes:~# vgs
> VG #PV #LV #SN Attr VSize VFree
> vg0 1 3 0 wz--n- <29.52g <8.35g
> vg1 1 1 0 wz--n- <100.00g <50.00g

root@superstes:~# vgdisplay
prettified
> --- Volume group ---
> VG Name vg1
> VG Access read/write
> VG Status resizable
> MAX LV 0
> Cur LV 1
> Open LV 1
> Max PV 0
> Cur PV 1
> Act PV 1
> VG Size <100.00 GiB
> Alloc PE / Size 12800 / 50.00 GiB
> Free PE / Size 12799 / <50.00 GiB
>
> --- Volume group ---
> VG Name vg0
> VG Access read/write
> VG Status resizable
> VG Size <29.52 GiB
> Alloc PE / Size 5420 / 21.17 GiB
> Free PE / Size 2137 / <8.35 GiB

Logical Volumes

These commands show you the existing Logical Volumes.

root@superstes:~# lvs
> LV VG Attr LSize Pool Origin Data% Meta% Move Log Cpy%Sync Convert
> root vg0 -wi-ao---- <9.66g
> swap vg0 -wi-ao---- <1.86g
> var vg0 -wi-ao---- <9.66g
> data vg1 -wi-ao---- 50.00g

root@superstes:~# lvdisplay
prettified
> --- Logical volume ---
> LV Path /dev/vg1/data
> LV Name data
> VG Name vg1
> LV Write Access read/write
> LV Status available
> LV Size 50.00 GiB
>
> --- Logical volume ---
> LV Path /dev/vg0/root
> LV Name root
> VG Name vg0
> LV Size <9.66 GiB
>
> --- Logical volume ---
> LV Path /dev/vg0/var
> LV Name var
> VG Name vg0
> LV Size <9.66 GiB
>
> --- Logical volume ---
> LV Path /dev/vg0/swap
> LV Name swap
> VG Name vg0
> LV Size <1.86 GiB

Create

OS Setup

If you set-up Ubuntu or Debian you need to create your LVM-config using the graphical setup!

Once your main partitions are placed on non-LVM volumes - it is hard to move them.

It might be easier to just reinstall the machine.

Bootable

You might need to create your boot-partition ‘outside’ the LVM!

I found that EFI boot did not really work when put inside a LVM volume.

Therefor you might want to create a 512MB primary partition at the begin of your disk-layout that acts as ‘EFI bootable’ or ‘/boot’.

Example for BIOS:

[image: boot_bios]

Example for UEFI:

[image: boot_efi]

Add physical volume

	Add physical volume

	Make sure LVM recognized the new disk:

pvscan

Remember the name of your new disk.

	Create a new volume group or add the physical volume to an existing one:

create new one
vgcreate <NAME-OF-NEW-VOLUME-GROUP> /dev/<NAME-OF-NEW-DISK>
example: vgcreate vg1 /dev/sdb

add to existing one (ADVANCED USAGE)
vgextend <NAME-OF-EXISTING-VOLUME-GROUP> /dev/<NAME-OF-NEW-DISK>
example: vgextend vg0 /dev/sdb

	Create a new logical volume - if needed:

lvcreate -n <NAME-OF-NEW-VOLUME> -L <SIZE-OF-NEW-VOLUME> <NAME-OF-VOLUME-GROUP>
example: lvcreate -n data -L 20G vg1

	Create file-system: (‘ext4’ in this case)

mkfs.ext4 /dev/mapper/<NAME-OF-VOLUME-GROUP>-<NAME-OF-NEW-VOLUME>
example: mkfs.ext4 /dev/mapper/vg1-data

	Mount volume:

1. create mount directory
mkdir -p /<PATH-TO-MOUNTPOINT>
example: mkdir -p /mnt/data

2. mount permanently
2.1. edit fstab-config
sudo nano /etc/fstab

2.2. append line
/dev/mapper/<NAME-OF-VOLUME-GROUP>-<NAME-OF-NEW-VOLUME> /<PATH-TO-MOUNTPOINT> <NAME-OF-FILESYSTEM> defaults 0 2
example: /dev/mapper/vg1-data /mnt/data ext4 defaults 0 2

2.3. save and exit
2.4. mount
sudo mount -a

check if volume was mounted correctly (yes - if shown in output)
mount | grep "/<PATH-TO-MOUNTPOINT>"
example: mount | grep "/mnt/data"

Resize

Warning

If you don’t know what you are doing => you should not make changes like these on an important system!

You might BREAK YOU SYSTEM!!

Try it on an useless VM and play around with it or leave it to the pros.

We need to go through these steps:

	Extend the physical drive or partition

1.1. Drive

You might need to resize the disk in your virtual environment/hypervisor.

1.2. Partition - entering fdisk

start fdisk targeting the modified disk
fdisk /dev/<NAME-OF-DISK>
example: fdisk /dev/sdb

show current partition layout
p

1.3. Partition - direct vs nested

Sometimes the target partition might be encapsulated inside an ‘extended’ partition.

It might look like this:

fdisk -l /dev/sda
> Device Boot Start End Sectors Size Id Type
> /dev/sda1 * 2048 999423 997376 487M 83 Linux
> /dev/sda2 1001470 25163775 24162306 11.5G 5 Extended
> /dev/sda5 1001472 25163775 24162304 11.5G 8e Linux LVM

In that case you will have to delete and re-add both of these partitions to extend them.

delete partition you want to extend
d
=> number of partition

delete the extended partition
d
=> number of partition

re-create the extended partition
n
=> choose 'extended'
e
=> enter or choose custom partition number
=> enter
=> enter

re-create the target partition
n
=> enter
=> enter
=> remove the Signature?
n # else your LVM config will be gone

modify partition type
t
=> enter partition number
8e # for LVM disk

verify the layout is the same as before (except being bigger)
p

save and write
w

example:
fdisk /dev/sda
d ENTER 5 ENTER
d ENTER 2 ENTER
n ENTER e ENTER 2 ENTER ENTER ENTER
n ENTER ENTER n ENTER
t ENTER 5 ENTER 8e ENTER
w

If that is not the case it is a little easier:

delete partition you want to extend
d
=> number of partition to increase

re-create the partition
n
=> enter or choose custom partition number
=> enter
=> enter
=> remove the Signature?
n # else your LVM config will be gone

modify partition type
t
=> enter partition number
8e # for LVM disk

verify the layout is the same as before (except being bigger)
p

save and write
w

example:
fdisk /dev/sda
d ENTER 2 ENTER
n ENTER p ENTER 2 ENTER ENTER ENTER n ENTER
t ENTER 2 ENTER 8e ENTER
w

	Resize the LVM physical volume

pvresize /dev/sdX

	Extend the LVM volume group

vgextend vg0 /dev/sdX

	Extend the LVM logical volume

lvextend /dev/vg0/lv1 -L 20GB

	Update the partition size

resize2fs /dev/mapper/vg0-lv1

#!/bin/bash
PD='sda'
LVM_PV="${PD}2"
LVM_VG='vg0'
LVM_LV='lv1'
EXT='20GB'

fdisk "/dev/${PD}"
pvresize "/dev/${LVM_PV}"
vgextend "${LVM_VG}" "/dev/${LVM_PV}"
lvextend "/dev/${LVM_VG}/${LVM_LV}" -L "${EXT}"
resize2fs "/dev/mapper/${LVM_VG}-${LVM_LV}"

Tip

If you find some discrepancy or missing information - open a GitHub issue [https://github.com/superstes/wiki/issues/new]

Was this information useful? Then star the repository on GitHub [https://github.com/superstes/wiki/stargazers]

Web Application Firewalling

First we’ll go through some basic knowledge and after that we’ll look into practical log analysis.

Level of attacks

There are some different levels of attacks you will encounter:

	Bad crawlers

Gathering information from your site for some unknown use-case using GET/HEAD.

You might be able to block them by implementing bot-detection and crawler verification.

	Probes

Checking your site for known exploits that are far-spread or common data-/information-leaks.

They only use GET/HEAD.

You might be able to block them by creating a simple ruleset from the information you could gather by analyzing the request logs.

	Dumb scripts

This one might try to exploit single functions behind an URL or submit unprotected forms.

Attackers will not change the user-agent of their http-client or set it to none.

They might already use a pool of IP-addresses.

You can easily block them by creating a list of bad user-agents.

	Better script

Also might try to exploit single functions behind an URL or submit unprotected forms.

Attackers change their user-agent and use a pool of IP-addresses.

Sometimes they still use a static user-agent or show the same major browser version but with different minor versions and operating system versions. (p.e. Chrome 103.x.x from Windows NT 6.x-10.x)

The TLS-fingerprint will always be the same as the actual http-client does not change.

They might also forget to set a referer or some accept headers that are set by all mainstream browsers nowadays.

Client-side fingerprinting will catch them.

	Advanced bot tools

There are some bot-tools out there that can mimic a default browser in nearly every aspect.

It’s a continuous battle between them and client-side fingerprinting to fight for/against detection.

These kind of attacks might be detectable by abnormal traffic patterns related to GeoIP country/ASN.

Most unofficial botnets use hijacked servers to proxy their requests. If you are able to find out that user-actions are performed by clients that originate from hosting-/datacenter-IPs you might be onto something.

You can also just make it harder to perform important actions by using captcha [https://www.hcaptcha.com/] or some other logic. Of course - that is a fight against AI tools.

	Automation with real Browsers

To get a clean browser fingerprint some attacker may use actual mainstream browsers (with GUI) and use auto-clickers or similar tools to automate website interactions.

These can get stopped by using captcha or monitoring the mouse movement & keyboard strokes using javascript.

	Human bots

As a last resort - some might even leverage humans as ‘bots’.

Some countries have low price-points for human work-hours. An example is India.

There are whole companies that provide such a service. You tell them what to do and they have thousands of smartphones with proxies/VPNs that can target a website.

As the devices are actual ‘users’ and can handle some anti-bot logic they might be hard to fight.

It helps if you create some alerts for web-actions (p.e. POST on some form) that will be triggered if a threshold is exceeded. That way you can manually check if there is some unusual traffic going on.

Fingerprinting

Fingerprinting is used to:

	identify clients across IP addresses

	give us more information to identify bad traffic patterns that might indicate an attack

Usually systems use both client-side and server-side fingerprinting.

See also: information provided by niespodd [https://github.com/niespodd/browser-fingerprinting]

Server-Side Fingerprint

This is most of the times implemented on your proxy/WAF or the application itself.

It is pretty straight-forward to implement, but has some major limitations as we are limited by the information we get from the client.

Therefor it alone cannot be used to get an unique fingerprint per client.

GeoIP information like country and ASN can be very useful to limit the matching-scope of such a fingerprint - if you want to lower the risk of blocking/flagging a single one. (more uniqueness, less global matching)

How can it be assembled?

	boolean values (1/0)

	existence of headers (referer, accept, accept-encoding, accept-language)

	existence of header values

	settings inside headers

	Is the domain inside the request or ‘just’ set as host-header?

	sorting of URL-parameters or values inside headers or cookies

	upper-/lower-/mixed-case of values

	unusual special characters inside values

	LF or CRLF line breaks used

	usage of whitespace

	hashes

	hash of some header-/cookie-value

	of the TLS-Fingerprint

	information

	limiting the match-scope by using the first 8-16 bits of the IP-address, GeoIP country and/or GeoIP ASN

TLS Fingerprint

The SSL/TLS fingerprint can be useful as it differs between http-clients.

Nearly each http-client software and version of it uses a specific set of TLS settings. But there are overlaps between http-clients or be forged by attackers.

The common settings used to build such a fingerprint are:

SSLVersion,Cipher,SSLExtension,EllipticCurve,EllipticCurvePointFormat

Example: 769,47-53-5-10-49161-49162-49171-49172-50-56-19-4,0-10-11,23-24-25,0
Example Hashes:
 * aeaf2f865911f886e3f721156a5f552e (wget)
 * ac507a278bdeca60a1c96c29fa244b81 (curl)
 * 63f63ca1aa38d95aae0be017b760408b (firefox 118-120)

Such a fingerprint enables us to compare it against the user-agent a client supplied. If there is an abnormality we can investigate it.

You could also create a mapping of known-good user-agents to TLS fingerprints and block/flag requests that don’t match.

But for now there seems to be no public JA3 fingerprint database to compare your findings against. But I have a project like that in my backlog.. (;

See also: JA3 SSL-fingerprint [https://github.com/salesforce/ja3]

Client-Side Fingerprint

Creating a browser-fingerprint with information that is available on the client can be very useful.

We have access to much more information on the client that allows us to create fingerprints with high-precision uniqueness.

Information that might be used:

	is javascript enabled

	environment/settings

	screen size

	color depth/inversion

	languages

	timezone

	storage preferences

	canvas

	fonts

	are cookies enabled

	audio

	operating system

	hardware

	cpu & concurrency

	screen resolution

	memory

	screen touch support

	browser

	type and flavor

	plugins

	webGL

Some existing libraries: (Note: I have not tested them)

	(pay-to-win) fingerprintJS Repository [https://github.com/fingerprintjs/fingerprintjs], fingerprintJS example [https://fingerprintjs.github.io/fingerprintjs/], fingerprintJS information [https://fingerprint.com/]

	creepJS Repository [https://github.com/abrahamjuliot/creepjs], creepJS example [https://abrahamjuliot.github.io/creepjs/], creepJS information [https://gologin.com/creepjs]

	supercookie [https://github.com/jonasstrehle/supercookie], supercookie example [https://demo.supercookie.me/identity], supercookie Docs [https://supercookie.me/workwise]

	cross-browser [https://github.com/Song-Li/cross_browser], cross-browser example [https://uniquemachine.org/#fingerprint]

Bot detection

You might want to flag requests that might be bots so your application can handle them differently.

You can use a boolean flag or a bot-score.

Either way you might want to block ‘dumb script’ bots first or flag them as such.

Script bots

How might one detect them?

	Search the user-agent for common http-clients used by scripting languages:

	Headless browsers (*headless*)

	Python3 libraries (*python*, scrapy, aiohttp, httpx, …)

	Golang (go-http-client, …)

	Javascript packages (axios, …)

	Shell tools (curl, wget, …)

	Powershell

	C++ (cpp-httplib)

	C#

	Java (*java*)

	Ruby (*ruby*)

	Perl (*perl*)

	PHP (guzzlehttp, phpcrawl, …)

	Darknet crawlers (test-bot, *tiny-bot, fidget-spinner-bot, …)

	No user-agent at all

This list is only scratching the surface of tools/libraries that are used in the wild. You will have to check your logs and extend the list if needed.

Actual bots

Note: This bot-check will not differentiate between ‘good crawler bots’ and others.

Note: If you have a client-side fingerprint implemented - you might also use that detailed information to further filter-out bots.

You might want to flag a request as possible bot if:

	They use known good-crawler user-agents

	They have ‘bot’, ‘spider’ or ‘monitor’ in their user-agent

	They have headers like ‘accept’, ‘accept-language’, ‘accept-encoding’ or ‘referer’ unset

Note: You might encounter false-positives on the users ‘entry page’ if it is the first site the user opens (no referer set). But this is uncommon.

Note: Old browsers (<2015) might not set the *accept* headers. But this is uncommon nowadays.

	They originate from

	a datacenter (GeoIP database needed)

	a country that is not expected to request your site (GeoIP database needed)

	an ASN that is known to be used by bots: ASN spamlist [https://cleantalk.org/blacklists/asn], Spamhaus ASN-DROP [https://www.spamhaus.org/news/article/820/the-return-of-the-asn-drop] (GeoIP database needed)

	IPs that are known to be used by bots: Tor exit node IPList [https://check.torproject.org/torbulkexitlist], Spamhaus DROP [https://www.spamhaus.org/drop/]

Going further - you might want to flag them as ‘bad’ if:

	They use a common good-crawler user-agent but failed the crawler verification

	You can use the ASN-/IP-Lists mentioned above

Crawler verification

The large organizations that use crawlers to supply their services with information will provide you with a way to verify if a crawler, that uses their user-agent, is a legitimate one.

Most will either:

	configure their bot source-IPs with a specific reverse-DNS (PTR) record

	supply you with a way to check their source-IP with a list of IP-ranges

Examples:

	Google Bots via reverse-DNS [https://developers.google.com/search/docs/crawling-indexing/verifying-googlebot]

	Bing Bots via reverse-DNS [https://www.bing.com/webmasters/help/how-to-verify-bingbot-3905dc26]

	Yandex Bots via reverse-DNS [https://yandex.com/support/webmaster/robot-workings/check-yandex-robots.html]

	Facebook Bots via IP-List [https://developers.facebook.com/docs/sharing/bot]

GeoIP information

GeoIP databases can help you to identify attacks.

You might either want to implement such lookups into your proxy or log-server.

The most interesting data in my opinion is:

	Country

	ASN (internet-/hosting-provider)

	Hosting detection [https://ipapi.is/hosting-detection.html]

	VPN/Proxy/Tor/Relay detection [https://ipinfo.io/developers/privacy-detection-database]

You can check-out some databases:

	Maxmind Free GeoLite2-databases: GeoLite2 database download [https://dev.maxmind.com/geoip/geolite2-free-geolocation-data], GeoLite2 database information [https://dev.maxmind.com/static/pdf/GeoLite2-IP-MetaData-Databases-Comparison-Chart.pdf], Maxmind Docs [https://dev.maxmind.com/geoip/docs/databases/city-and-country#binary-databases]

	Maxmind Paid databases: Maxmind API [https://dev.maxmind.com/geoip/docs/web-services/requests], Maxmind databases [https://www.maxmind.com/en/geoip-databases]

	IP-Info: ipinfo.io API [https://ipinfo.io/pricing#data], ipinfo.io Docs [https://ipinfo.io/developers/ip-to-geolocation-database]

	IP-API: ipapi.is Docs [https://ipapi.is/geolocation.html], ipapi.is FREE databases [https://github.com/ipapi-is/ipapi]

Analyzing Request Logs

If you want to protect a web-application from threats you will have to analyze the requests targeting it.

When analyzing request/access logs the right way, you might be able to detect ‘hidden’ attacks targeting the application.

I would highly recommend log-server solutions like GrayLog [https://graylog.org/products/source-available/] or Grafana Loki [https://grafana.com/oss/loki/] to have a Web-UI that enables you to deeply analyze your log-data.

Server-Side information

As mentioned above in the server-side fingerprint section - we do not have that much information available when only doing server-side inspection.

Therefore it can be very useful to implement some GeoIP database lookups to gain more options for analyzing the data we have.

Most times we will want to group our data by two to four attributes to visualise correlations.

Bot flagging

If you have bot-flags configured you can get a brief overview of how many bots and script-bots access your site:

[image: log_time_bot]

[image: log_time_bot_bad]

Per-path analysis

If you have specific endpoints/URLs/paths that are targeted by attack - you should filter the logs to reduce the scope of your statistics and get better results:

	Bots that target the path using POST:

[image: log_time_path_bot]

	Status-Codes/Blocks of POST requests

To one path:

[image: log_time_path_sc]

To another path:

[image: log_time_path_sc2]

GeoIP information

You might recognize how useful such information can be.

Bots by country:

[image: log_country_bot]

Script-Bots by country:

[image: log_country_botbad]

Normal requests vs bot-requests by country:

[image: log_country_bot_normal]

Requests by country over time:

[image: log_time_country]

Requests by ASN:

[image: log_asn]

Blocks by ASN:

[image: log_asn_blocks]

Fingerprints

Fingerprints like JA3-TLS can also be useful for analyzing traffic.

POST requests to specific path by status-code:

[image: log_path_ja3_bot]

POST requests to specific path by source-network:

[image: log_path_ja3_src]

User Agents

You may also be able to find useful links by checking the user agents.

POST requests to specific path by user-agent and TLS-fingerprint.

[image: log_path_ua_ja3]

POST requests to specific path by user-agent, TLS-fingerprint and block.

[image: log_path_ua_ja3_block]

Errors & Blocks

HTTP 4xx responses over time: (red + orange = blocks)

[image: log_4xx_time_sc]

HTTP 4xx responses by source-networks:

[image: log_4xx_src]

HTTP 4xx responses by ASN:

[image: log_4xx_asn]

HTTP 4xx responses by country:

[image: log_4xx_country]

Blocks by country:

[image: log_blocks_country]

Blocks by TLS fingerprint:

[image: log_blocks_ja3]

Client-Side information

You will have to send/pass the information, gathered by Javascript on the client, to your server.

tbc..

Tip

If you find some discrepancy or missing information - open a GitHub issue [https://github.com/superstes/wiki/issues/new]

Was this information useful? Then star the repository on GitHub [https://github.com/superstes/wiki/stargazers]

Network

	Firewall - NFTables

	Proxy - Squid

	Proxy Tool - GOST

	Proxy Tool - ProxyShark

	Security Approaches

	Tor

Tip

If you find some discrepancy or missing information - open a GitHub issue [https://github.com/superstes/wiki/issues/new]

Was this information useful? Then star the repository on GitHub [https://github.com/superstes/wiki/stargazers]

Warning

Writing of this documentation is still in progress! Read it with a grain of salt!

Firewall - NFTables

Introduction

Chain hooks/Table families

[image: nft_hooks]

Packet flow

[image: nft_flow]

References

	Quick reference [https://wiki.nftables.org/wiki-nftables/index.php/Quick_reference-nftables_in_10_minutes]

	Change history [https://wiki.nftables.org/wiki-nftables/index.php/List_of_updates_since_Linux_kernel_3.13]

	Differences with IPTables [https://wiki.nftables.org/wiki-nftables/index.php/Main_differences_with_iptables]

	Configuration

	tables [https://wiki.nftables.org/wiki-nftables/index.php/Quick_reference-nftables_in_10_minutes#Tables], table families [https://wiki.nftables.org/wiki-nftables/index.php/Nftables_families]

	chain know-how [https://wiki.nftables.org/wiki-nftables/index.php/Configuring_chains], chains [https://wiki.nftables.org/wiki-nftables/index.php/Quick_reference-nftables_in_10_minutes#Chains], chain hooks [https://wiki.nftables.org/wiki-nftables/index.php/Netfilter_hooks]

	rule know-how [https://wiki.nftables.org/wiki-nftables/index.php/Simple_rule_management], rules [https://wiki.nftables.org/wiki-nftables/index.php/Quick_reference-nftables_in_10_minutes#Rules]

	sets [https://wiki.nftables.org/wiki-nftables/index.php/Sets]

	dynamic sets [https://wiki.nftables.org/wiki-nftables/index.php/Updating_sets_from_the_packet_path], elements [https://wiki.nftables.org/wiki-nftables/index.php/Element_timeouts]

	counters [https://wiki.nftables.org/wiki-nftables/index.php/Counters]

	limits [https://wiki.nftables.org/wiki-nftables/index.php/Rate_limiting_matchings]

	meters [https://wiki.nftables.org/wiki-nftables/index.php/Meters]

	maps [https://wiki.nftables.org/wiki-nftables/index.php/Maps], vmaps [https://wiki.nftables.org/wiki-nftables/index.php/Verdict_Maps_(vmaps)]

	set meta information [https://wiki.nftables.org/wiki-nftables/index.php/Setting_packet_metainformation], match meta information [https://wiki.nftables.org/wiki-nftables/index.php/Matching_packet_metainformation]

	NAT

	source/destination NAT [https://wiki.nftables.org/wiki-nftables/index.php/Performing_Network_Address_Translation_(NAT)]

	multi NAT [https://wiki.nftables.org/wiki-nftables/index.php/Multiple_NATs_using_nftables_maps]

	load balancing [https://wiki.nftables.org/wiki-nftables/index.php/Load_balancing]

	Examples

	Ruleset for server [https://wiki.nftables.org/wiki-nftables/index.php/Simple_ruleset_for_a_server]

	Ruleset for workstation [https://wiki.nftables.org/wiki-nftables/index.php/Simple_ruleset_for_a_workstation]

	math operations [https://wiki.nftables.org/wiki-nftables/index.php/Math_operations]

	mangle package headers [https://wiki.nftables.org/wiki-nftables/index.php/Mangling_packet_headers]

	expressions [https://wiki.nftables.org/wiki-nftables/index.php/Building_rules_through_expressions]

	routing information [https://wiki.nftables.org/wiki-nftables/index.php/Matching_routing_information]

	bridge filtering [https://wiki.nftables.org/wiki-nftables/index.php/Bridge_filtering]

	connection tracker helpers [https://wiki.nftables.org/wiki-nftables/index.php/Conntrack_helpers]

	debugging [https://wiki.nftables.org/wiki-nftables/index.php/Ruleset_debug/tracing]

Installation

Kernel Modules

Some functionality of NFTables might not be enabled by default.

To check which was enabled at compile-time - check the config file:

cat "/boot/config-$(uname -r)" | grep -E "CONFIG_NFT|CONFIG_NF_TABLES"

To find all existing modules:

find /lib/modules/$(uname -r) -type f -name '*.ko' | grep -E 'nf_|nft_'

To enable a module:

modprobe nft_nat
modprobe nft_tproxy

Usage

Config File

NFTables can be completely configured from one or more config files.

Most times you might want to use:

	a main config file: /etc/nftables.conf

	a configuration directory to include further files: /etc/nft.conf.d/

The systemd service will load the main config file by default:

/lib/systemd/system/nftables.service
[Unit]
...

[Service]
...
ExecStart=/usr/sbin/nft -f /etc/nftables.conf
ExecReload=/usr/sbin/nft -f /etc/nftables.conf
ExecStop=/usr/sbin/nft flush ruleset
...

Main config file example:

#!/usr/sbin/nft -f
flush ruleset
include "/etc/nft.conf.d/*.conf"

Then you can add your actual configuration in the configuration directory!

To test your configuration:

nft -cf /etc/nftables.conf

CLI

	CLI overview [https://wiki.nftables.org/wiki-nftables/index.php/Quick_reference-nftables_in_10_minutes#Nft_scripting]

	Scripting [https://wiki.nftables.org/wiki-nftables/index.php/Scripting]

Programmatically

THere are some libraries/modules that enable you to manage NFTables from code directly:

	Backend for the libraries: libnftables [https://www.mankier.com/5/libnftables-json]

	GoLang: github.com/google/nftables [https://pkg.go.dev/github.com/google/nftables], source code [https://github.com/google/nftables]

	Python3: documentation [https://ral-arturo.org/2020/11/22/python-nftables-tutorial.html], source code [https://git.netfilter.org/nftables/tree/py], examples [https://github.com/aborrero/python-nftables-tutorial]

Ansible

See: NFTables Ansible-Role [https://github.com/ansibleguy/infra_nftables/blob/latest/docs/Example.md]

Troubleshooting

Trace

You can trace traffic that flows through you chains.

See also: NFTables documentation - trace [https://wiki.nftables.org/wiki-nftables/index.php/Ruleset_debug/tracing]

You need to:

	Tag traffic you want to trace by adding the meta nftrace set 1 option to a rule.

	Listen to this traces by running nft monitor trace in a separate terminal.

You may want to start the trace at the point where the traffic enters.

Example for input traffic:

chain input {
 type filter hook input priority 0; policy drop;

 # enable tracing for: tcp-traffic to port 1337 originating from a specific network
 tcp dport 1337 ip saddr 192.168.10.0/24 meta nftrace set 1

 ...

}

Example for output traffic:

chain output {
 type filter hook output priority 0; policy drop;

 # enable tracing for: http+s to a specific target
 tcp dport { 80, 443 } ip daddr 1.1.1.1 meta nftrace set 1

 ...

}

Example monitor information:

nft monitor trace
> trace id a95ea7ef ip filter trace_chain packet: iif "enp0s25" ether saddr 00:0d:b9:4a:49:3d ether daddr 3c:97:0e:39:aa:20 ip saddr 8.8.8.8 ip daddr 192.168.2.118 ip dscp cs0 ip ecn not-ect ip ttl 115 ip id 0 ip length 84 icmp type echo-reply icmp code net-unreachable icmp id 9253 icmp sequence 1 @th,64,96 24106705117628271805883024640
> trace id a95ea7ef ip filter trace_chain rule meta nftrace set 1 (verdict continue)
> trace id a95ea7ef ip filter trace_chain verdict continue
> trace id a95ea7ef ip filter trace_chain policy accept
> trace id a95ea7ef ip filter input packet: iif "enp0s25" ether saddr 00:0d:b9:4a:49:3d ether daddr 3c:97:0e:39:aa:20 ip saddr 8.8.8.8 ip daddr 192.168.2.118 ip dscp cs0 ip ecn not-ect ip ttl 115 ip id 0 ip length 84 icmp type echo-reply icmp code net-unreachable icmp id 9253 icmp sequence 1 @th,64,96 24106705117628271805883024640
> trace id a95ea7ef ip filter input rule ct state established,related counter packets 168 bytes 53513 accept (verdict accept)

Translate IPTables

Most times the behaviour of IPTables and NFTables is pretty much the same.

In some Distributions the default IPTables backend is already migrated to NFTables.

Why translate from IPTables?

There are 1000x more resources related to IPTables out there that might help you get things working.

I would recommend:

	having a blank VM to test IPTables ruleset

	save the working minimal-ruleset iptables-save > /etc/iptables/rules.ipt

	translate the ruleset to nftables iptables-restore-translate -f /etc/iptables/rules.ipt > /etc/iptables/rules.nft

	test the NFTables ruleset and remove the default chains you don’t need (IPTables is a little more messy with its defaults)

BTW: one can also restore IPTables rules by using iptables-restore < /etc/iptables/rules.ipt

Config

NFTables base-config example [https://wiki.superstes.eu/en/latest/_static/raw/network/nftables_base.txt]

TPROXY

Quote from the tproxy kernel docs [https://docs.kernel.org/networking/tproxy.html]:

Transparent proxying often involves "intercepting" traffic on a router.
This is usually done with the iptables REDIRECT target; however, there are serious limitations of that method.
One of the major issues is that it actually modifies the packets to change the destination address -- which might not be acceptable in certain situations. (Think of proxying UDP for example: you won't be able to find out the original destination address. Even in case of TCP getting the original destination address is racy.)
The 'TPROXY' target provides similar functionality without relying on NAT.

This functionality allows us to send traffic to an userspace process and read/modify it.

This can enable powerful solutions! Per example see: blog.cloudflare.com - Abusing Linux’s firewall [https://blog.cloudflare.com/how-we-built-spectrum/]

Warning

TPROXY seems to only support local targets.

As one can see in the kernel sources - there is a check if the target port is in use: nft_tproxy.c [https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/tree/net/netfilter/nft_tproxy.c#n64]

References

	Kernel - TPROXY [https://docs.kernel.org/networking/tproxy.html]

	PowerDNS - TPROXY [https://powerdns.org/tproxydoc/tproxy.md.html]

	Squid - TPROXY [http://wiki.squid-cache.org/Features/Tproxy4]

	Policy Routing - TPROXY [https://serverfault.com/questions/1052717/how-to-translate-ip-route-add-local-0-0-0-0-0-dev-lo-table-100-to-systemd-netw]

	NFTables source - TPROXY [https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/tree/net/netfilter/nft_tproxy.c]

	Kernel source - TPROXY [http://git.netfilter.org/nftables/commit/?id=2be1d52644cf77bb2634fb504a265da480c5e901]

Usage

One thing you’ll need to know: The TPROXY operation can only be used in the prerouting - filter (mangle) chain!

Traffic that passes this chain/hook by default can easily be proxied.

OUTPUT CHALLENGE:

Because of this - traffic that enters at the ‘output’ (originating from the same host) chain/hook can not be redirected directly.

We need to route it to ‘loopback’ so it passes through ‘prerouting’.

NOTE: This image shows the problem we are facing in a very abstract way. It might not display the traffic-flow in a correct manner!

[image: nft_tproxy]

REMOTE PROXY CHALLENGE:

You might want to target a remote proxy server. This does not work with this operation on its own.

One would need to use a proxy-forwarder tool that can handle this for you.

I’ve patched an existing tool for exactly this purpose: proxy-forwarder [https://github.com/superstes/proxy-forwarder]

With a tool like that you can wrap the plain traffic received from TPROXY and forward or tunnel it.

NFTables =TCP=> TPROXY (forwarder @ 127.0.0.1) =HTTP[TCP]=> PROXY

> curl https://superstes.eu
proxy-forwarder
2023-08-29 20:49:10 | INFO | handler | 192.168.11.104:36386 <=> superstes.eu:443/tcp | connection established
proxy (squid)
NONE_NONE/200 0 CONNECT superstes.eu:443 - HIER_NONE/- -
TCP_TUNNEL/200 6178 CONNECT superstes.eu:443 - HIER_DIRECT/superstes.eu -

> curl http://superstes.eu
proxy-forwarder
2023-08-29 20:49:07 | INFO | handler | 192.168.11.104:50808 <=> superstes.eu:80/tcp | connection established
proxy (squid)
TCP_REFRESH_MODIFIED/301 477 GET http://superstes.eu/ - HIER_DIRECT/superstes.eu text/html

Examples

	NFTables TPROXY example [https://gist.github.com/superstes/6b7ed764482e4a8a75334f269493ac2e], local NFTables TPROXY example [https://wiki.superstes.eu/en/latest/_static/raw/network/nftables_tproxy.txt]

	IPTables TPROXY example [https://gist.github.com/superstes/c4fefbf403f61812abf89165d7bc4000], local IPTables TPROXY example [https://wiki.superstes.eu/en/latest/_static/raw/network/iptables_tproxy.txt]

Service

To keep invalid configuration from stopping/failing your nftables.service - you can add a config-validation in it:

/etc/systemd/system/nftables.service.d/override.conf

[Service]
ExecStartPre=/usr/sbin/nft -cf /etc/nftables.conf

ExecReload=
ExecReload=/usr/sbin/nft -cf /etc/nftables.conf
ExecReload=/usr/sbin/nft -f /etc/nftables.conf

Restart=on-failure
RestartSec=5s

This will catch and log config-errors before doing a reload/restart.

When doing a system-reboot it will still fail if your config is bad.

Addons

NFTables lacks some functionality, that is commonly used in firewalling.

You can add a scheduled scripts that add these functionalities to NFTables!

See: Ansible-managed addons [https://github.com/ansibleguy/addons_nftables]

DNS

It is nice to have variables that hold the IPs of some DNS-record.

NFTables CAN resolve DNS-records - but will throw an error if the record resolves to more than one IP.. (Error: Hostname resolves to multiple addresses)

See: NFTables Addon DNS [https://github.com/superstes/nftables_addon_dns]

IPLists

This addon was inspired by the same functionality provided on OPNSense [https://docs.opnsense.org/manual/how-tos/edrop.html#configure-spamhaus-e-drop]

It will download existing IPLists and add them as NFTables variables.

IPList examples:

	Spamhaus DROP [https://www.spamhaus.org/drop/drop.txt]

	Spamhaus EDROP [https://www.spamhaus.org/drop/edrop.txt]

	Tor exit nodes [https://check.torproject.org/torbulkexitlist]

See: NFTables Addon IPList [https://github.com/superstes/nftables_addon_iplist]

Failover

See: NFTables Addon Failover [https://github.com/superstes/nftables_addon_failover]

Examples

Ansible

See: Ansible-based examples [https://github.com/ansibleguy/infra_nftables/blob/latest/docs/UseCaseExamples.md]

IPv4 Baseline

IPv6 Baseline

Security Baseline

Docker host

Proxmox host (PVE)

Forwarder (Router, Network firewall, VPN Server)

Integrations

Fail2Ban

Squid

Tip

If you find some discrepancy or missing information - open a GitHub issue [https://github.com/superstes/wiki/issues/new]

Was this information useful? Then star the repository on GitHub [https://github.com/superstes/wiki/stargazers]

Warning

Writing of this documentation is still in progress! Read it with a grain of salt!

Proxy - Squid

Warning

This application let’s you intercept and modify network traffic.

That can be illegal => you are warned.

Introduction

Whenever we are referring to a ‘client’ - it will be a server, workstation or network device in most cases.

Setup

Manual

Docker

You can build a docker image as seen in this repository [https://github.com/superstes/squid-openssl-docker]!

References

	Config examples [https://wiki.squid-cache.org/ConfigExamples/] (WARNING: some examples are deprecated and will not work on current versions)

Installation

SSL

If you are only ‘peaking’ at SSL connections - this should be enough:

sudo apt install squid-openssl # the package needs to have ssl-support enabled at compile-time

openssl dhparam -outform PEM -out /etc/squid/ssl_bump.dh.pem 2048

openssl create self-signed cert
openssl req -x509 -newkey rsa:4096 -keyout /etc/squid/ssl_bump.key -out /etc/squid/ssl_bump.crt -sha256 -days 3650 -nodes -subj "/C=XX/ST=StateName/L=CityName/O=CompanyName/OU=CompanySectionName/CN=Forward Proxy"

create ssl cache DB
sudo mkdir -p /var/lib/squid
sudo rm -rf /var/lib/squid/ssl_db
sudo /usr/lib/squid/security_file_certgen -c -s /var/lib/squid/ssl_db -M 20MB
sudo chown -R proxy:proxy /var/lib/squid

If you want to intercept SSL connections (Man-in-the-middle like) - you will have to go through some more steps: squid docs - ssl interception [https://wiki.squid-cache.org/ConfigExamples/Intercept/SslBumpExplicit]

Modes

HTTP_PORT

The http_port mode can be used as target proxy in applications like browsers.

Usual port 3128 is used for this mode.

The application creates a HTTP-CONNECT tunnel to the proxy and wraps its requests in it.

DNS resolution is done by the proxy.

HTTPS_PORT

Like mode http_mode but the HTTP-CONNECT tunnel is wrapped in TLS.

Usual port 3129 is used for this mode.

For the proxy to be able to handle the DNS resolution - ssl-bump must be configured. Else the proxy will not be able to read the Server-Name-Identifier used in the TLS handshake.

INTERCEPT

In this mode the proxy will expect the plain traffic to arrive.

You will have to create a dedicated listener with ssl-bump enabled if you want to handle TLS traffic.

See also:

	Squid documentation - interception [https://wiki.squid-cache.org/SquidFaq/InterceptionProxy]

	Squid documentation - policy routing [https://wiki.squid-cache.org/ConfigExamples/Intercept/IptablesPolicyRoute]

SSL-BUMP

SSL-BUMP allows us to:

	read TLS handshake information

	intercept (read/modify) TLS traffic

PEAK

By peaking at TLS handshake information in ssl-bump step-1 we are able to gain some important information:

	target DNS/hostname from SNI

Benefits:

	less performance needed than full ssl-interception

	faster than full ssl-interception

	less problems with applications that check certificates on their end (p.e. banking)

	no need to create/manage an internal Sub-CA to dynamically create and sign certificates for ssl-intercepted targets

Drawbacks:

	less options to filter the traffic on

	connections to trustable targets could carry dangerous payloads

In some cases a basic DNS ‘allow-list’ will be enough to ensure good security. Many automated attacks can be blocked using this approach.

INTERCEPT

This one will be used in zero-trust environments.

See also: Security Stances

Note:

…

Even incorrectly used TLS usually makes it possible for at least one end of the communication channel to detect the proxies existence.
Squid SSL-Bump is intentionally implemented in a way that allows that detection without breaking the TLS.
Your clients will be capable of identifying the proxy exists.
If you are looking for a way to do it in complete secrecy, dont use Squid.

Benefits:

	ssl-interception gives us much information that can be used to run IPS/IDS checks on

	possible dangerous payloads like downloads can be checked by anti-virus

	more restrictions make even interactive attacks harder to go through

Drawbacks:

	complex ruleset if you go with an implicit-deny approach

	much more performance needed

	increasing latency

	with a bad ruleset you will still have security-leaks but also have worse performance (lose-lose)

TPROXY

TProxy is a functionality built into current kernels.

It allows us to redirect traffic without modifying it. This solves the issue with overwritten destination-IPs by using Destination-NAT.

The major two integrations of TPROXY we will focus on are the ones in IPTables and NFTables.

In both implementations this is how we will need to handle the three main traffic types:

	INPUT traffic: can be redirected to TPROXY directly

	FORWARD traffic: can be redirected to TPROXY directly

	OUTPUT traffic: needs to be routed to loopback to be redirected to TPROXY

Why do we need to send ‘output’ traffic to loopback? Because TPROXY is only available in the ‘prerouting-filter’ chain and ‘output’ traffic does not hit that one by default.

NFTables

See: NFTables TProxy

IPTables

See: IPTables TPROXY [https://gist.github.com/superstes/c4fefbf403f61812abf89165d7bc4000]

Config

Config options [https://wiki.superstes.eu/en/latest/_static/raw/network/squid_config_options.txt]

	Matching all subdomains of a Domain can be done by prepending a dot (‘wildcard’ matching)

Example: ‘.example.com’

You may not all ‘example.com’ and ‘.example.com’ as it will result in a syntax error

	You may want to exclude Port-Probes from your logs:

acl hasRequest has request
access_log syslog:local2 squid hasRequest

You need to define listeners:

See also: Squid documentation - http_port [http://www.squid-cache.org/Doc/config/http_port/]

clients =HTTP[TCP]=> SQUID =TCP=> TARGET
http_port 3128 ssl-bump tcpkeepalive=60,30,3 cert=/etc/squid/ssl_bump.crt key=/etc/squid/ssl_bump.key cipher=HIGH:MEDIUM:!RC4:!aNULL:!eNULL:!LOW:!3DES:!MD5:!EXP:!PSK:!SRP:!DSS tls-dh=prime256v1:/etc/squid/ssl_bump.dh.pem options=NO_SSLv3,NO_TLSv1,SINGLE_DH_USE,SINGLE_ECDH_USE

clients =HTTPS[TCP]=> SQUID =TCP=> TARGET
https_port 3128 ssl-bump tcpkeepalive=60,30,3 cert=/etc/squid/ssl_bump.crt key=/etc/squid/ssl_bump.key cipher=HIGH:MEDIUM:!RC4:!aNULL:!eNULL:!LOW:!3DES:!MD5:!EXP:!PSK:!SRP:!DSS tls-dh=prime256v1:/etc/squid/ssl_bump.dh.pem options=NO_SSLv3,NO_TLSv1,SINGLE_DH_USE,SINGLE_ECDH_USE

clients =ROUTED TCP=> SQUID =TCP=> TARGET
http_port 3129 intercept
https_port 3130 intercept ssl-bump tcpkeepalive=60,30,3 cert=/etc/squid/ssl_bump.crt key=/etc/squid/ssl_bump.key cipher=HIGH:MEDIUM:!RC4:!aNULL:!eNULL:!LOW:!3DES:!MD5:!EXP:!PSK:!SRP:!DSS tls-dh=prime256v1:/etc/squid/ssl_bump.dh.pem options=NO_SSLv3,NO_TLSv1,SINGLE_DH_USE,SINGLE_ECDH_USE

clients =TPROXY TCP=> SQUID (@127.0.0.1) =TCP=> TARGET
http_port 3129 tproxy
https_port 3130 tproxy ssl-bump tcpkeepalive=60,30,3 cert=/etc/squid/ssl_bump.crt key=/etc/squid/ssl_bump.key cipher=HIGH:MEDIUM:!RC4:!aNULL:!eNULL:!LOW:!3DES:!MD5:!EXP:!PSK:!SRP:!DSS tls-dh=prime256v1:/etc/squid/ssl_bump.dh.pem options=NO_SSLv3,NO_TLSv1,SINGLE_DH_USE,SINGLE_ECDH_USE

You can define the IPs Squid should use for outbound traffic. This can be useful to define specific firewall rules for those addresses:

tcp_outgoing_address 192.168.10.2
tcp_outgoing_address 2001:db8::1:2

You may want to cover at least those basic filters:

	only allow

	specific destination ports

acl dest_ports port 80
acl dest_ports port 443
acl dest_ports port 587
http_access deny !dest_ports

	only allow proxy-access from specific source networks

acl src_internal src 127.0.0.0/8
acl src_internal src 192.168.0.0/16
acl src_internal src 172.16.0.0/12
acl src_internal src 10.0.0.0/8
http_access deny !src_internal

	only allow access to specific destinations

	filter on an IP-basis

acl dst_internal src 192.168.0.0/16
acl dst_internal src 172.16.0.0/12
acl dst_internal src 10.0.0.0/8
http_access allow dst_internal
http_access deny all

	filter on a DNS-basis (SSL-Bump ‘Peak’ needed)

acl domains_allowed dstdomain example.com
acl domains_allowed dstdomain superstes.eu
http_access allow domains_allowed
http_access deny all

	check server certificates for issues (expired, untrusted, weak ciphers)

tls_outgoing_options options=NO_SSLv3,NO_TLSv1,SINGLE_DH_USE,SINGLE_ECDH_USE cipher=HIGH:MEDIUM:!RC4:!aNULL:!eNULL:!LOW:!3DES:!MD5:!EXP:!PSK:!SRP:!DSS
acl ssl_exclude_verify dstdomain .example.com
sslproxy_cert_error allow ssl_exclude_verify
sslproxy_cert_error deny all

	enable ssl-bump ‘peaking’

sslcrtd_program /usr/lib/squid/security_file_certgen -s /var/lib/squid/ssl_db -M 20MB

acl CONNECT method CONNECT
acl ssl_ports port 443
acl step1 at_step SslBump1

http_access deny CONNECT !ssl_ports
http_access allow CONNECT step1 # without 'step1' here one would be able to 'tunnel' unwanted traffic through the proxy
ssl_bump peek step1 ssl_ports
ssl_bump splice all

Service

To keep invalid configuration from stopping/failing your squid.service - you can add a config-validation in it:

/etc/systemd/system/squid.service.d/override.conf

[Service]
ExecStartPre=
ExecStartPre=/usr/sbin/squid -k parse
ExecStartPre=/usr/sbin/squid --foreground -z

ExecReload=
ExecReload=/usr/sbin/squid -k parse
ExecReload=/bin/kill -HUP $MAINPID

Restart=on-failure
RestartSec=5s

This will catch and log config-errors before doing a reload/restart.

When doing a system-reboot it will still fail if your config is bad.

Examples

Transparent Proxy

Sometimes setting the environment-variables ‘HTTP_PROXY’, ‘HTTPS_PROXY’, ‘http_proxy’ and ‘https_proxy’ for all applications and HTTP-clients may be problematic/too inconsistent.

An attacker might also be able to modify the environmental variables once a vulnerability has been exploited.

Destination NAT

In some older tutorials and write-ups you will see that people DNAT traffic from a ‘client’ system to a remote proxy server.

This IS NOT SUPPORTED by squid.

It will lead to an error like this: ‘Forwarding loop detected’

Why is that?

Squid’s transparent operation modes DO NOT handle DNS resolution! They instead use the actual destination IP from the IP-headers and send the outgoing traffic to it. That is because of some vulnerability [http://www.squid-cache.org/Advisories/SQUID-2011_1.txt]

When using DNAT the destination IP is set to the proxy’s IP. Therefore => loop.

Routed Traffic

You can use this option if the proxy server shares a Layer 2 network with the system that sends or routes the traffic.

Practical examples of this:

	Network gateway (router) sends traffic to proxy for interception

	‘Client’ devices use the proxy as gateway instead of the actual router

In this case we will need to set-up Squid listeners in intercept mode to process the traffic.

You could also use the tproxy mode - but that might be more complicated to set-up when you want to check the traffic that enters at the ‘forwarding’ chain.

Forwarded Traffic

In some situations you will not be able to use the option to route the traffic to the proxy.

This might be because:

	you are not controlling the gateway/router

	the ‘client’ device is isolated (only connected to WAN)

	client and/or network restrictions don’t allow for re-routing the traffic

Practical examples of this:

	A Cloud VPS or Root Server that is only connected to WAN

	Distributed Systems using a central proxy (p.e. on-site at customers)

In this case we might need other tools like proxy-forwarder [https://github.com/superstes/proxy-forwarder] to act as forwarder:

> curl https://superstes.eu
proxy-forwarder
2023-08-29 20:49:10 | INFO | handler | 192.168.11.104:36386 <=> superstes.eu:443/tcp | connection established
squid
NONE_NONE/200 0 CONNECT superstes.eu:443 - HIER_NONE/- -
TCP_TUNNEL/200 6178 CONNECT superstes.eu:443 - HIER_DIRECT/superstes.eu -

> curl http://superstes.eu
proxy-forwarder
2023-08-29 20:49:07 | INFO | handler | 192.168.11.104:50808 <=> superstes.eu:80/tcp | connection established
squid
TCP_REFRESH_MODIFIED/301 477 GET http://superstes.eu/ - HIER_DIRECT/superstes.eu text/html

[image: squid_remote]

Troubleshooting

What does not work?

One might want to try some other ways of sending/redirecting traffic to a squid proxy.

Here are some examples that DO NOT WORK

	Destination NAT to remote Squid server in transparent mode

journalctl -u squid.service -n 50
...
WARNING: Forwarding loop detected for
...
TCP_MISS/403 ORIGINAL_DST/<proxy-ip>
...

	DNAT 80/443 to squid in non-transparent mode

journalctl -u squid.service -n 50
...
Missing or incorrect access protocol
...
NONE/400
...

	IPTables/NFTables TPROXY to socat forwarder [https://manpages.debian.org/unstable/socat/socat.1.en.html]

SOCat is actually correctly receiving and forwarding the traffic - BUT practically it acts like a DNAT operation

'client'
socat tcp-listen:3129,reuseaddr,fork,bind=127.0.0.1,ip-transparent tcp:<proxy-ip>:3129

journalctl -u squid.service -n 50
...
WARNING: Forwarding loop detected for
...
TCP_MISS/403 ORIGINAL_DST/<proxy-ip>
...

	Intercept/TPROXY mode with Squid inside docker container

Essentially docker seems to be NATing the traffic.

ERROR: NF getsockopt(ORIGINAL_DST) failed on conn18 local=192.168.0.2:3130 remote=192.168.0.1:48910 FD 12 flags=33: (2) No such file or directory
ERROR: NAT/TPROXY lookup failed to locate original IPs on conn18 local=192.168.0.2:3130 remote=192.168.0.1:48910 FD 12 flags=33

Known problems

	Clients have many timeouts

It may be that your cache size is too small.

This can happen when many requests hit the proxy in a short time period.

Possible Solution:

	Increase your main cache:

cache_mem 1024 MB (see docs - cache_mem [http://www.squid-cache.org/Versions/v4/cfgman/cache_mem.html])

	Increase your session cache:

sslproxy_session_cache_size 512 MB

	Increase your ssl cache (only if you intercept ssl)

ssl_db => sslcrtd_program /usr/lib/squid/security_file_certgen -s /var/lib/squid/ssl_db -M 256M

	Increase your ssl session timeout

sslproxy_session_ttl 600

	Bus error

It seems this happens when the value of sslproxy_session_cache_size is larger than the one of ssl_db

	NONE_NONE/409 & SECURITY ALERT: Host header forgery detected

This error can occur whenever the squid proxy runs in intercept mode and resolves the target hostname to another IP than the client.

That check can help against attacks that can trick the proxy into allowing bad traffic.

As today’s DNS servers use very low TTLs it might happen that some traffic triggers this check as false-positive.

You can disable this check for HTTP (plaintext) traffic by setting host_verify_strict off (default)

HTTPS traffic will still be forced fail for some unclear reason.. :(

See also: Squid wiki - host_verify_strict [http://www.squid-cache.org/Doc/config/host_verify_strict/] & Squid wiki - host header forgery [https://wiki.squid-cache.org/KnowledgeBase/HostHeaderForgery]

You could - of course use the proxy-forwarder [https://github.com/superstes/proxy-forwarder] to translate the intercepted TCP traffic into HTTP & HTTPS requests that you are able to send to the ‘forward-proxy’ port of squid. (that one will ignore that check…)

Tip

If you find some discrepancy or missing information - open a GitHub issue [https://github.com/superstes/wiki/issues/new]

Was this information useful? Then star the repository on GitHub [https://github.com/superstes/wiki/stargazers]

Proxy Tool - GOST

Warning

This tool can be used to hide/forward malicious network traffic.

That can be illegal => you are warned.

Introduction

GOST [https://latest.gost.run/en/] is a tool for proxying pretty much anything and anyhow you want/need to.

Check out the nice documentation [https://latest.gost.run/en/tutorials]!

It can act as proxy server and client/forwarder.

If you need to be able to route some traffic through some kind of proxy - this is the tool for you!

It can proxy:

	TLS Tunnel [https://latest.gost.run/en/tutorials/tls/]

	HTTP/HTTPS Tunnel [https://latest.gost.run/en/tutorials/http-tunnel/]

	PROXY Protocol [https://latest.gost.run/en/tutorials/proxy-protocol/]

	DNAT/REDIRECT Traffic [https://latest.gost.run/en/tutorials/redirect/#redirect] (originated from the same host))

	TRPOXY integration [https://latest.gost.run/en/tutorials/redirect/#tproxy]

	ICMP tunnel [https://latest.gost.run/en/tutorials/icmp/]

	And has many more hacky features

Forwarding to HTTP Proxy

NFTables =TCP=> TPROXY (forwarder @ 127.0.0.1) =HTTP[TCP]=> PROXY (squid http_port)

The current implementation of HTTP-forwarding in gost does not work correctly.

Problems:

	HTTP not working (always wants to tunnel over HTTP-CONNECT)

	HTTPS over IPv6 not working

Solution:

I’ve created a patched version of gost for exactly this purpose: proxy-forwarder [https://github.com/superstes/proxy-forwarder]

DNAT

You can use it to catch DNAT traffic and forward it to a remote proxy-server like squid:

proxy-forwarder -P 4128 -F http://192.168.10.20:3128
creates tcp & udp listeners for IPv4 & IPv6 on localhost:4128

NAT non-internal targets to the proxy
nftables
nft add rule nat output ip daddr != { 192.168.0.0/16, 10.0.0.0/8, 172.16.0.0/12 } tcp dport { 80, 443 } dnat to 127.0.0.1:3128

iptables
iptables -t nat -A OUTPUT -p tcp ! -d 172.22.0.0/12 --dport 443 -j DNAT --to-destination 127.0.0.1:3128
iptables -t nat -A OUTPUT -p tcp ! -d 172.22.0.0/12 --dport 80 -j DNAT --to-destination 127.0.0.1:3128

TPROXY

If you want to also proxy UDP traffic - you might want to use the TPROXY integration [https://latest.gost.run/en/tutorials/redirect/#tproxy]:

proxy-forwarder -P 4128 -F http://192.168.10.20:3128 -T

to also set a fw-mark on processed traffic
proxy-forwarder -P 4128 -F http://192.168.10.20:3128 -T -M 100

Config Examples:

	IPTables TPROXY [https://gist.github.com/superstes/c4fefbf403f61812abf89165d7bc4000]

	NFTables TPROXY [https://gist.github.com/superstes/6b7ed764482e4a8a75334f269493ac2e]

Privileges

You can run GOST TPROXY-mode with non-root users if you add a capability [https://man7.org/linux/man-pages/man7/capabilities.7.html] to the binary:

sudo setcap cap_net_raw+ep /usr/local/bin/gost
sudo chown root:gost /usr/local/bin/gost
chmod 750 /usr/local/bin/gost

Tip

If you find some discrepancy or missing information - open a GitHub issue [https://github.com/superstes/wiki/issues/new]

Was this information useful? Then star the repository on GitHub [https://github.com/superstes/wiki/stargazers]

Proxy Tool - ProxyShark

Warning

This application let’s you intercept and modify network traffic.

That can be illegal => you are warned.

Introduction

I came across a challenge that needed me to modify tcp packages as man-in-the-middle.

I found a nice tool to do that; but without much information on how to set it up or use it.

Therefore I will provide those info’s to you:

The tool I’m talking about is called ‘proxyshark’. It’s a python2 program/script written by the company ‘CONIX Cybersecurity’ from france.

Just so I acknowledged it:

	I know you could code this from scratch by only using the netfilterqueue and scapy modules

	There are cleaner, faster and more up-to-date projects out there.. (p.e. pypacker)

Source

Original

	GitHub [https://github.com/conix-security/audit-proxyshark]

My fork containing the fixes as described below:

	ProxyShark Fork [https://github.com/superstes/audit-proxyshark]

Dependencies

At first I had some problems getting started with this script since the dependencies are ‘a little’ outdated.

Disclaimer: You might want to use this on a vm - since the dependencies will foul your system a little.

install pip2 dependencies
apt install build-essential python-dev libnetfilter-queue-dev tshark git python2

install pip2
wget https://bootstrap.pypa.io/pip/2.7/get-pip.py
sudo python2 get-pip.py

install pip packages
python2 -m pip install dnspython pyparsing

scapy workaround
python3 -m pip install scapy
sudo mkdir /usr/lib/python2.7/dist-packages/scapy
cd /usr/lib/python3/dist-packages/
sudo cp -avr scapy/* /usr/lib/python2.7/dist-packages/scapy

Bugs & Fixes

Code

Note

The fixes are included in my fork of this project => link can be found above.

The capture bugged out on me.

Therefore I fixed some ‘bugs’ that broke it:

Line 1159 => comment out the existing regex and replace it with this one:

regex = r'^.*(\d+\.\d+) +([^]+) +-> +([^]+) +([^]+) +[^]+ +(.*)$'
regex = r'.*?(\d+\.\d+)\s*((?:[0-9]{1,3}\.){3}[0-9]{1,3}).*?((?:[0-9]{1,3}\.){3}[0-91,3})\s*([A-Z]{3,20})\s*(.*)' # might be problematic in edge-cases

Line 1674 => add those lines before the 'if item_showname' matching:
if type(item_show) == 'unicode':
 item_show = item_show.encode('utf8')
if type(item_showname) == 'unicode':
 item_showname = item_showname.encode('utf8')

Execution

Tshark

Run it with the ‘-t /usr/bin’ argument to use the newer apt-version of tshark => the one from their repo bugged out on me..

Packet modification

Somehow the ‘direct’ packet modification did not work.

I found the list object ‘_items_to_commit’ and modified the value in it => that worked

bpkt._items_to_commit[22]['value'] = 'aa02'

Usage

Some basic commands can be found in the ReadMe of the repository [https://github.com/conix-security/audit-proxyshark/blob/master/README.md]!

python2 ps1/proxyshark.py -v --capture-filter 'dst host 8.8.8.8' --packet-filter 'udp' -t /usr/bin/

	Start the capture from the interactive mode by typing ‘run’

	You should now see packages matching the filter by typing ‘packet’ (last one) or ‘queue’ (all)

	Those packages can be ‘caught’ by defining a breakpoint.

	Captured packets can be interacted with in the default python2 syntax.

	All possible attributes etc. can be displayed by entering ‘bpkt.__dict__’ (after capturing some packet with a breakpoint)

	Breakpoints can either pause the capture, so the packet can be edited manually, or modify it automatically with defined action

At first you might want to play around with the attributes of captures packets.

After that you can write automated actions to become a fully-grown m.i.t.m.

Examples

	show tcp data attributes

bpkt['tcp.data']

	show tcp flags

bpkt['tcp.flags']

	show ip destination

bpkt['ip.dst']

	rewrite tcp-reserved bits in auto-mode:

a add ta1 to tb1 "_flags = bpkt['tcp.flags'][0]['unmaskedvalue'][:1] + 'a' + bpkt['tcp.flags'][0]['unmaskedvalue'][2:]" "bpkt._items_to_commit[22]['value'] = _flags" "print _flags" "bpkt.accept()"

Tip

If you find some discrepancy or missing information - open a GitHub issue [https://github.com/superstes/wiki/issues/new]

Was this information useful? Then star the repository on GitHub [https://github.com/superstes/wiki/stargazers]

Warning

Writing of this documentation is still in progress! Read it with a grain of salt!

Security Approaches

Introduction

When it comes to IT- and Network security there are some main approaches/stances you may want to know.

Tip

Feel free to start Discussions [https://github.com/superstes/wiki/discussions] regarding this topic!

If you too have gained experiences in this area I would be interested if you are missing something.

What to secure

Network components

	Switches

	Routers

	Network firewalls

	VPN endpoints

Network clients

	User devices like laptops, desktops, thin-clients

	Different operating systems like Windows, MacOS, Linux, ChromeOS, Android, …

	Servers

	Different operating systems like Windows Server, Linux, …

	Smartphones, tables

	IOT, automation devices

	Printers

Cloud resources

Nearly all IT infrastructures have at least some components hosted on some cloud platform.

The main security of those services needs to ensured by the cloud providers - but consumers also need to ensure secure configuration on their side.

Virtualization infrastructure

Many companies use virtualization to share server-hardware between many virtual servers.

	Hypervisors

	Storage servers

	Control nodes

Some companies also use containerization like plain docker or even kubernetes to run their services.

Information

Information is essential - it also needs to be secured.

	Databases

	Files

	Backup systems

	Applications

Overview

I will try to keep this overview of existing stances/mindsets as objective as possible.

These are very theoretically - but I will go into how they can translate into practical usage in the personal experience <net_security_approach_personal> section!

Perimeter-based

Classic network designs were built around the concept of an enterprise LAN consisting of switches, routers and Wi-Fi connectivity.

The LAN contained one or more data centers, which housed applications and data.

This LAN formed the security network perimeter.

Accessing apps and services via the internet, VPNs and remote sites across WAN connections is considered external to the organization with perimeter-based security.

Everything connected to the LAN is considered “trusted,” and devices coming from outside the perimeter are “untrusted”.

This means external users must prove who they are through various security and identification tools.

Zero Trust

Reference: NIST SP 800-207 - Zero Trust Architecture [https://csrc.nist.gov/pubs/sp/800/207/final]

TLDR: ‘Implicit trust is always a vulnerability, and therefore security must be designed with the strategy of “Never trust, always verify”’

Quotes

I’ll quote some companies that provide solutions in the Zero-Trust area:

	NIST SP 800-207

Source: NIST SP 800-207 PDF [https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-207.pdf]

A typical enterprise’s infrastructure has grown increasingly complex. A single enterprise may operate several internal networks, remote offices with their own local infrastructure, remote and/or mobile individuals, and cloud services. This complexity has outstripped legacy methods of perimeter-based network security as there is no single, easily identified perimeter for the enterprise. Perimeter-based network security has also been shown to be insufficient since once attackers breach the perimeter, further lateral movement is unhindered.

This complex enterprise has led to the development of a new model for cybersecurity known as “zero trust” (ZT). A ZT approach is primarily focused on data and service protection but can and should be expanded to include all enterprise assets (devices, infrastructure components, applications, virtual and cloud components) and subjects (end users, applications and other non-human entities that request information from resources). Throughout this document, “subject” will be used unless the section relates directly to a human end user in which “user” will be specifically used instead of the more generic “subject.” Zero trust security models assume that an attacker is present in the environment and that an enterprise-owned environment is no different—or no more trustworthy—than any nonenterprise-owned environment. In this new paradigm, an enterprise must assume no implicit trust and continually analyze and evaluate the risks to its assets and business functions and then enact protections to mitigate these risks. In zero trust, these protections usually involve minimizing access to resources (such as data and compute resources and applications/services) to only those subjects and assets identified as needing access as well as continually authenticating and authorizing the identity and security posture of each access request.

	VMWare

Source: VMWare - Zero Trust [https://www.vmware.com/topics/glossary/content/zero-trust-security.html]

Zero Trust Security is a concept created on the belief that implicit trust is always a vulnerability, and therefore security must be designed with the strategy of “Never trust, always verify”. In its simplest form, Zero Trust restricts access to IT resources using strictly enforced identity and device verification processes.

Zero Trust enforces the use of stringent security controls for users and devices before they can gain access to protected resources. Zero Trust identity authentication and authorization use the principle of least privilege (PoLP), which grants the absolute minimum rights required for a given function – before a single packet is transferred.

This has become necessary because of the changes in how network resources are accessed. Gone are the days of a network perimeter or VPN-only access; today’s increasingly mobile workforce and growth in the work-at-home movement demand new security methods be considered for users, while the increasingly distributed nature of computing with containers and micro-services means that device-to-device connections are increasing as well.

Thus, Zero Trust requires mutual authentication to confirm the identity and integrity of devices regardless of location to grant access based on the confidence of device identity, device health, and user authentication combined.

	Microsoft

Source: Transform to zero-trust-model [https://www.microsoft.com/en-us/security/blog/2019/10/23/perimeter-based-network-defense-transform-zero-trust-model/]

The traditional firewall (VPN security model) assumed you could establish a strong perimeter, and then trust that activities within that perimeter were “safe.” The problem is today’s digital estates typically consist of services and endpoints managed by public cloud providers, devices owned by employees, partners, and customers, and web-enabled smart devices that the traditional perimeter-based model was never built to protect. We’ve learned from both our own experience, and the customers we’ve supported in their own journeys, that this model is too cumbersome, too expensive, and too vulnerable to keep going.

We can’t assume there are “threat free” environments. As we digitally transform our companies, we need to transform our security model to one which assumes breach, and as a result, explicitly verifies activities and automatically enforces security controls using all available signal and employs the principle of least privilege access. This model is commonly referred to as “Zero Trust.”

Basically

Benefits:

	tbc..

Drawbacks:

	Many different systems and lots of configuration is needed to ensure practical Zero-Trust - this brings some problems with it:

	It may be very costly to operate those systems

	Administrating those systems may consume more time

	Keeping an overview of the configuration may get harder

	How these systems need to be operated differs greatly from

	The users experience might be negatively impacted (false-positive blocks, increased latency, more authentication)

	This essentially can bring down the company’s productivity/efficiency by a little

	tbc..

To keep an overview over the configuration of all those systems one might also need to implement infrastructure-as-code [https://www.redhat.com/en/topics/automation/what-is-infrastructure-as-code-iac] to centralize it.

Personal experience

Here I will go into what these theoretical approaches can look like in practice.

Take this information with a grain of salt as it is spawned from the IT-environments I’ve interacted with and

Tip

If you find some discrepancy or missing information - open a GitHub issue [https://github.com/superstes/wiki/issues/new]

Was this information useful? Then star the repository on GitHub [https://github.com/superstes/wiki/stargazers]

Tor

Warning

Tor SHOULD NOT be used to masquerade the source of malicious network requests.

That can be illegal => you are warned.

Introduction

Tor is used to anonymize network requests and host/allow access to hidden (.onion) services.

Warning

Traffic you send over tor should ALWAYS be encrypted!

Else malicious tor nodes might be able to read and even modify your requests.

Just using the tor network won’t be enough to stay anonymous!

You should also always follow the basic guidelines on how to stay anonymous [https://support.torproject.org/faq/staying-anonymous/].

If you are serious about your anonymity you might even go a set further and:

	Set-up a virtual machine to use for accessing tor.

Per example: whonix [https://www.whonix.org/wiki/VirtualBox]

	Connect that vm to a network that has no access to internal resources. (only internet access, maybe a guest-network or ‘dmz’)

Route traffic over tor

Tor uses the protocol SOCKS5 [https://en.wikipedia.org/wiki/SOCKS].

A technical limitation of the tor implementation [https://gitlab.torproject.org/legacy/trac/-/issues/7830] is that only TCP-traffic [https://en.wikipedia.org/wiki/Transmission_Control_Protocol] can be sent over those connections.

DNS

DNS-requests can be tunneled specially to prevent dns-leaking [https://gitlab.torproject.org/legacy/trac/-/wikis/doc/Preventing_Tor_DNS_Leaks]. (your provider [and so on..] will know what you are accessing)

Implementation examples:

	Cloudflare hidden resolver [https://blog.cloudflare.com/welcome-hidden-resolver/]

	local tor dns-port [https://gitlab.torproject.org/legacy/trac/-/wikis/doc/TransparentProxy#local-redirection-through-tor/]

Basically:

example on ubuntu/debian

sudo -i
installing
apt update
apt install tor -y
if you want to start it on system boot
systemctl enable tor

configuration
echo 'DNSPort 5353' > /etc/tor/torrc
systemctl start tor
echo 'nameserver 127.0.0.1' > /etc/resolv.conf # will not be persistent

	You might want to enable DNS-over-HTTPS or DNS-over-TLS [https://www.cloudflare.com/learning/dns/dns-over-tls/] to keep your requests secure.

Web access

To access websites anonymously you can use the tor browser [https://www.torproject.org/download/].

Basics:

	Use DuckDuckGo as search engine!

Other engines like Google will compromise your anonymity!

	Don’t log-in with your personal accounts => it will compromise your anonymity.

	Don’t enable JavaScript (disabled via NoScript by default)

Some websites won’t work correctly => but it keeps you safe(r).

	You might see websites blocking your requests as the most providers are blocking or limiting requests from tor exit-nodes.

Maybe pressing ‘Ctrl+Shift+L’, to use a new ‘route’ for accessing the current page, might help.

	Using hidden services

The ‘default’ websites you use daily using your normal browser are in a domain of the internet called ‘clear-net’.

You can browse them without worrying too much - they might ‘just’ compromise your anonymity.

Hidden services are in the ‘deep-net’ => those are hidden for the usual user and only reachable using tor.

For clarification: tor is only ONE network that hosts hidden services - there are more out there

Hidden services have their own search engines but they have not listed many of the existing services!

For the most** part you need to know the unique .onion address of a service to access it.

Warning

Be aware:

	You might see/find disturbing and/or illegal content on those hidden services.

	You need to have a basic technical understanding on how to interact with those services securely - else you might even get hacked.

Specific program

Whenever you want a program to use tor as ‘gateway’ for its connection you need to ‘proxy’ it.

That proxy needs a tor ‘SOCKS’ socket to connect to.

SOCKS socket:

	The easiest way of starting such a socket is by opening the tor browser

It starts such a socket in the background!

socks5 127.0.0.1 9150

	Another way is to install & start tor as service

socks5 127.0.0.1 9050

Linux

On linux I would recommend using the application ‘proxychains4’ to achieve that.

You just need to set the SOCKS target to use.

example: tor browser SOCKS
sudo -i
echo 'socks5 127.0.0.1 9150' > /etc/proxychains4.conf

After that you can just start the application that should connect over tor by prepending ‘proxychains4’ to its command:

without tor
curl https://ipinfo.io/city
using tor
proxychains4 curl https://ipinfo.io/city

SSH

You can also set a proxy for ssh-connections.

Another program called ‘netcat’ is needed to archive that.

You will need to install the variant ‘netcat-openbsd’ as the ‘default’ one does not implement the needed options.

example on ubuntu/debian using tor browser SOCKS
install dependencies
sudo apt update
sudo apt install openssh netcat-openbsd -y

use
ssh -p PORT -o ProxyCommand="nc -X5 -x127.0.0.1:9150 %h %p" USER@SERVER

All Traffic

There are options to send all TCP-Traffic and DNS-Requests over the tor network.

Warning

This should only be used if you really know what you are doing - as there are many ways you might compromise your anonymity!

Linux

Here is the official guide to proxying [https://gitlab.torproject.org/legacy/trac/-/wikis/doc/TransparentProxy].

I won’t go into the details on how to set this up - as I have not got experience with it.

It is done something like this: (copied from the guide)

example for 'middlebox' on ubuntu/debian
sudo -i
installing
apt update
apt install tor -y
if you want to start it on system boot
systemctl enable tor

writing config
echo 'VirtualAddrNetworkIPv4 10.192.0.0/10' > /etc/tor/torrc
echo 'AutomapHostsOnResolve 1' >> /etc/tor/torrc
echo 'TransPort 192.168.1.1:9040' >> /etc/tor/torrc
echo 'DNSPort 192.168.1.1:5353' >> /etc/tor/torrc
systemctl restart tor

adding traffic redirection
_trans_port="9040"
_inc_if="eth1" # you need to update the interface
iptables -t nat -F # WARNING: will remove all existing NAT-rules
iptables -t nat -A PREROUTING -i $_inc_if -p udp --dport 53 -j REDIRECT --to-ports 5353
iptables -t nat -A PREROUTING -i $_inc_if -p udp --dport 5353 -j REDIRECT --to-ports 5353
iptables -t nat -A PREROUTING -i $_inc_if -p tcp --syn -j REDIRECT --to-ports $_trans_port

Windows

You can use a tool like OnionFruit [https://dragonfruit.network/onionfruit].

Tip

If you find some discrepancy or missing information - open a GitHub issue [https://github.com/superstes/wiki/issues/new]

Was this information useful? Then star the repository on GitHub [https://github.com/superstes/wiki/stargazers]

Coding

Index

Tip

If you find some discrepancy or missing information - open a GitHub issue [https://github.com/superstes/wiki/issues/new]

Was this information useful? Then star the repository on GitHub [https://github.com/superstes/wiki/stargazers]

Title

Warning

Bad stuff might happen..

Chapter1

Short description

H1

some code

H2

Tip

If you find some discrepancy or missing information - open a GitHub issue [https://github.com/superstes/wiki/issues/new]

Was this information useful? Then star the repository on GitHub [https://github.com/superstes/wiki/stargazers]

Warning

Writing of this documentation is still in progress! Read it with a grain of salt!

 _static/minus.png

_static/plus.png

_static/img/infra/lvm_boot_efi.png
Name:
Use as: EFI System Partition

Bootable flag: on

_static/img/infra/waf_log_4xx_asn.png
125%

1.2%

_static/img/infra/lvm_boot_bios.png
Use as:

Mount point:
Mount options:
Labe

Reserved blocks:

Typical usag
Bootable flag:

Ext4 journaling file sustem

/boot
defaults
nane

5%
standard
on

_images/lvm_boot_bios.png
Use as:

Mount point:
Mount options:
Labe

Reserved blocks:

Typical usag
Bootable flag:

Ext4 journaling file sustem

/boot
defaults
nane

5%
standard
on

_images/lvm_boot_efi.png
Name:
Use as: EFI System Partition

Bootable flag: on

_static/img/infra/waf_log_4xx_country.png
516%

591%

_static/img/infra/waf_log_4xx_source.png
152.195.103.x 152.195.102.x 66.249.81.x 74.125.208.x 66.249.64.x 40.77.167.x 52.167.144.x

_images/nftables_flow.png
e

Other NF parts
Other Networking

basic set of filterin
BERsEnLl e

network level
bridge level

clone packet

Packet flow in Netfilter and General Networking

WPUT PATH

Application Layer

e
53
m e
- Ry
K0P \XDPACCEPT L s [bridge
cpe e o (qdisc) > et

x0p_Tx

" detoie

. Protocol Layer , 1.
| ==

FORWARD PATH

by Jin Engeantt
(osed it on Jshun Syders rph)
DP i by Mateo Croce

Last updted 2013-My-15; Linue 5.1

QUTRUT PATH

o clane to
AF PACKET x|

Network Layer

input

. Ll [natid | routing |
prerouting: preroutingprerouing > decision -

[=

1 s

outfor brevity
**nat" table only consulted
for"NEW connections

mange s
> forward > forvard

e

Link Layer 5

e r—

forward > forward ¥ forvard

s packET

iertace
ouput_|

_images/nftables_hooks.png
Application Layer

Local
Process

Prerouting prioriies
400: defragmentation
~200: conntrack

Postrouting prioriies

No

== Bridge Layer output Yes
rerouting priorties
-200: connirack.
Prerouting Bridge Forward Postrouting p—
ecisio
ARP Layer

»{ e anes | %

(=

_static/img/infra/waf_log_blocks_country.png
1.02%
0.1
0.796%

1 w%]

RU
868% 763
86.8%

_images/nftables_tproxy.png
Prerouting H-s

This host

Routing

<LOOPBACK:

_static/img/infra/waf_log_blocks_ja3.png

nav.xhtml

 Table of Contents

 		
 Superstes Wiki

 		
 IT-Infrastructure

 		
 GRUB

 		
 Redundant boot disks

 		
 LVM

 		
 Intro

 		
 Usage

 		
 Web Application Firewalling

 		
 Level of attacks

 		
 Fingerprinting

 		
 Bot detection

 		
 Crawler verification

 		
 GeoIP information

 		
 Analyzing Request Logs

 		
 Network

 		
 Firewall - NFTables

 		
 Introduction

 		
 Installation

 		
 Usage

 		
 Troubleshooting

 		
 Config

 		
 Service

 		
 Addons

 		
 Examples

 		
 Integrations

 		
 Proxy - Squid

 		
 Introduction

 		
 Installation

 		
 Modes

 		
 Config

 		
 Service

 		
 Examples

 		
 Troubleshooting

 		
 Proxy Tool - GOST

 		
 Introduction

 		
 Forwarding to HTTP Proxy

 		
 Proxy Tool - ProxyShark

 		
 Introduction

 		
 Dependencies

 		
 Bugs & Fixes

 		
 Usage

 		
 Security Approaches

 		
 Introduction

 		
 What to secure

 		
 Overview

 		
 Personal experience

 		
 Tor

 		
 Introduction

 		
 Route traffic over tor

 		
 Coding

_static/img/infra/waf_log_asn.png
30.4%

_static/img/infra/waf_log_asn_blocks.png
9.86%
871%

7.21%

| o
y
2.14%)

2.02%
103

_images/waf_log_4xx_country.png
516%

591%

_static/img/infra/waf_log_country_botbad.png
us DE RU N

R

5

CA

GB

NL

PL

I

_images/waf_log_4xx_source.png
152.195.103.x 152.195.102.x 66.249.81.x 74.125.208.x 66.249.64.x 40.77.167.x 52.167.144.x

_static/img/infra/waf_log_errors_ja3.png
L
vg, '@fc b
a% e"ﬂoa, s “,, aq% s%%%%
esf; 5 NN 2
e&, "Sae,,, L, au%q % N o
e eﬁ% e 01,, 11@’53@03 ag@% ol éesd)/’
%% 1 S Jﬂ% %% K2 as; ’316"%0, 34,] Bbes, Beg. g,
) o o
2
2% D15, 22, St 491% o g

_images/squid_remote.png
This Host

Applications

NFTables or IPTables

L]

Forwarder-Service using
DNAT or TProxy

Proxy
Server

_static/img/infra/waf_log_country_bot.png
Us

DE SG R i

GB

CH

AT

NL

PL

RU

HU

o3

BE

_images/waf_log_4xx_asn.png
125%

1.2%

_static/img/infra/waf_log_country_bot_normal.png
DE CH IT AT FR GB HU SG NL SI PL ES Fl BE

_images/waf_log_asn_blocks.png
9.86%
871%

7.21%

| o
y
2.14%)

2.02%
103

_images/waf_log_blocks_country.png
1.02%
0.1
0.796%

1 w%]

RU
868% 763
86.8%

_images/waf_log_4xx_time_statuscodes.png

_static/img/infra/waf_log_errors_ja3_asn.png

_images/waf_log_asn.png
30.4%

_images/waf_log_blocks_ja3.png

_static/img/infra/waf_log_4xx_time_statuscodes.png

_images/waf_log_country_bot.png
Us

DE SG R i

GB

CH

AT

NL

PL

RU

HU

o3

BE

_static/img/infra/waf_log_time_bot.png
14:00 14:15 14:30 14:45

1515 15:30

_images/waf_log_country_bot_normal.png
DE CH IT AT FR GB HU SG NL SI PL ES Fl BE

_static/img/infra/waf_log_time_bot_bad.png

_static/img/infra/waf_log_path_ua_ja3.png

_static/img/infra/waf_log_path_ua_ja3_statuscode.png

_images/waf_log_errors_ja3_asn.png

_static/img/infra/waf_log_time_path_statuscode.png
12:00

g

_images/waf_log_path_ja3_bot.png

_static/img/infra/waf_log_time_path_statuscode2.png
00:00

12:00

_images/waf_log_country_botbad.png
us DE RU N

R

5

CA

GB

NL

PL

I

_static/img/infra/waf_log_time_country.png
14:00 14:15 14:30 14:45 15:00 15:15 15:30 15:45

_images/waf_log_errors_ja3.png
L
vg, '@fc b
a% e"ﬂoa, s “,, aq% s%%%%
esf; 5 NN 2
e&, "Sae,,, L, au%q % N o
e eﬁ% e 01,, 11@’53@03 ag@% ol éesd)/’
%% 1 S Jﬂ% %% K2 as; ’316"%0, 34,] Bbes, Beg. g,
) o o
2
2% D15, 22, St 491% o g

_static/img/infra/waf_log_time_path_bot.png

_images/waf_log_path_ua_ja3_statuscode.png

_images/waf_log_time_bot.png
14:00 14:15 14:30 14:45

1515 15:30

_images/waf_log_path_ja3_sourceip.png

_images/waf_log_path_ua_ja3.png

_static/img/infra/waf_log_path_ja3_bot.png

_static/img/infra/waf_log_path_ja3_sourceip.png

_images/waf_log_time_country.png
14:00 14:15 14:30 14:45 15:00 15:15 15:30 15:45

_images/waf_log_time_path_bot.png

_static/img/network/squid_remote.png
This Host

Applications

NFTables or IPTables

L]

Forwarder-Service using
DNAT or TProxy

Proxy
Server

_images/waf_log_time_bot_bad.png

_images/waf_log_time_path_statuscode.png
12:00

g

_images/waf_log_time_path_statuscode2.png
00:00

12:00

_static/file.png

_static/img/network/nftables_hooks.png
Application Layer

Local
Process

Prerouting prioriies
400: defragmentation
~200: conntrack

Postrouting prioriies

No

== Bridge Layer output Yes
rerouting priorties
-200: connirack.
Prerouting Bridge Forward Postrouting p—
ecisio
ARP Layer

»{ e anes | %

(=

_static/img/network/nftables_tproxy.png
Prerouting H-s

This host

Routing

<LOOPBACK:

_static/img/network/nftables_flow.png
e

Other NF parts
Other Networking

basic set of filterin
BERsEnLl e

network level
bridge level

clone packet

Packet flow in Netfilter and General Networking

WPUT PATH

Application Layer

e
53
m e
- Ry
K0P \XDPACCEPT L s [bridge
cpe e o (qdisc) > et

x0p_Tx

" detoie

. Protocol Layer , 1.
| ==

FORWARD PATH

by Jin Engeantt
(osed it on Jshun Syders rph)
DP i by Mateo Croce

Last updted 2013-My-15; Linue 5.1

QUTRUT PATH

o clane to
AF PACKET x|

Network Layer

input

. Ll [natid | routing |
prerouting: preroutingprerouing > decision -

[=

1 s

outfor brevity
**nat" table only consulted
for"NEW connections

mange s
> forward > forvard

e

Link Layer 5

e r—

forward > forward ¥ forvard

s packET

iertace
ouput_|

